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Axiomatic Theor_ of Control Systems.

by
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(IUJ_ and University of Buenos Aires)

1. l_troductlon.

_trol s_'stenust _ the broadest eense_ are those systems vhose

_Tl_aur _ not uniquel_ deter_ned by the initial conditions and the

_rlstlos of the m_tem ttse_j but there Is soae exterual action

_ateh deference the evolution of the symte=. When there is no external

action I one _enera_ saym that the system is in its "free re_ but

it _ _ arbitrary, to some extent_ _nere the zero for the external

a_on has to be set. _e classical description of the free physical

sylte_ is made by dtfferent_al equations vhlch_ together with so_e

_ait_al condltions_ determine untquel_ its t_e-evolution. AecordLngly_

the de_r_tton of control systems Is made mostly in terms of dlfferen-

t_ equations_ in vhlch so_e "control para_ter n appear_ so that in

order to obta_ a _olution it is necessary to knov the value of that

_a_ameter_ as a function of time or of position. Before fixing that

eomtroX f_nctlon_ the only knowledge about the behaviour of the system

_xls work was supported in part by the Air Force Office of Scientific

ReJearclr under contract AF _(638)-382; a_l the National Aerospace and

S_ace Admini_tratlon under contract NASr-103. Reproduction in whole or

in _ is l_r_Itted for any purpose of the United States Government.
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the whole set of possible states vhtch can be attained by all

possible choices of the control action. This set of attainable (or

reachable) states has been used recently in man_ papers about control

[2] [9] ]zo] [n].

AS • pneralization of the theory of differential equatlons_ the

topolo_cal dymunlcs studies all properties vhlch are characteristic for

solutions of differential equattons_ without a direct reference to those

equations I by assumlng as axto:s the basic properties of such curves

[_] [k] [8|. Sl_tlarl:r, for eo_rol s;]rlte,,,- the he,JLe properties of the

molutiozB can be assused in order to deTelop the whole theory in an

axtoaatte _. Here the axioms bate to refer to the properties of the

attatmble set_ this Is the set of all attainable states (_y m of

Ill _slble control actions) as functions of tim and tnltial position.

Bar, shin [1] _Te such axioms for "generalized dymmloal systems" and

Zubov [12] also used similar general systems for pro_ theorems about

etabLlLty. ]eTertheless s the applications to control theor 7 can be

exploited much farther than in those references_ so that it see:s worth-

vhtle _o glTe & complete exposition of this sub,set starttn6 from the

lrery 10el;Inning. This will be attempted in the present paper.

2. _tion.

Let X - Ix} denote a complete locally compact metric space; its

points represent the "states" of a gtTen system. The independent Tarlable

t ( R rill be called time. Point sets in X-space vtll be denoted by

capital letters A, B_ ...; collections of such sets by script capitals

....



In order to avoid infinite distances between sets we may re-

place the given metric d(a, b) by

(2.l)
d(a, b)

p(a, b) = l + d(a, b) "

Furthermore, we define the distance between points and sets,

and between sets, by:

(2.2) p(a, s) - p(s, a) = i_Cp(a, b); b c B}

(2._) p'(A,B) . supCp(a, _); a c A}.

(2._) p(A, B) = p(B, A) = max(pM(A, B), p*(B, A)).

aB

Accordingly we define an e-neighboring set of a given set A
O

I

I

t

SG(Ao) = {x¢ x; p(x,_) < e}.

Notations which also will be used in this paper are the following:

(X) = the collection of all non-empty subsets of X.

_(X) = the collection of all non-empty bounded subsets

of X.

_(X) = the collection of all non-empty closed subsets of X.

_ (X) = the collection of all non-empty compact subsets of X.

It is well known that (2.4) defines a pseudo-metric in the set

of all non-void subsets of X (p(A, B) = 0 if and only if A = B,
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denoting the closure of A).

sets, (2.4) defines a true metric (called the Hausdorff metric).

further details about the topology of spaces of subsets of X,

reader is referred to [6], [7].

Restricting the attention to closed sub-

For

the

3. The attainabilit[ function.

A control system will be given by a function which w_ call

"attainability f_nction" and has the following intuitive meaning. The

evolution of a general control system is determined by its initial state

x, the time t and some control action. Therefore, a given starting

point xo, to and a time tI > to determine a whole set of possible

end states x(tl) , corresponding to all possible choices of the control

action. This "attainable set from Xo, to at time tl" will be de-

noted by F(Xo, to, tl).

The following axioms will be assumed:

I) F(Xo, to, t) is a closed non-empty subset of X, defined for

every x e X$ t, t e R; t _ t.
o o

II) Initial condition: F(Xo, to, to) = {Xo} for every Xo, to .

III) Semigroup property: for to _ tI _ t2

rv)

F(xo, to, t2) : U F(xI, tl, t2).
X 1 ¢ F(xo, to, t I)

-__, there exists an x such thatGiven Xl' tl' to o
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x 1 c F(:'o, to, tl).

v)

vi)

F(Xo, to, t) is continuous in

there is a b > 0 such that

_or It - 51 < 8.

Y(Xo, to, t) is upper se_Icont/nuou_ in

any finite interval t ¢ T = [tl, t2],

XO, to, tl, t2 and c >01 there is a

t o • tl, ( > O,

P(Xo, to, tl))-:_

(Xo, to) , untr,,rmly i,,

t o - t2:

5 >0 such t_Lt

p*(F(x_, to, t), F(xo, to, t))<£

' t' t satisfyingfor all Xos o_

P(Xo, Xo) < 5, Ito-t41 <_, h _ t _ t2.

It is interecting to n_te t_t exit= III is eT_Iv%lcnt t,, th,:

following two to_ether:

IIl a) If xi ¢ F(xo' _o' tl) ar.:'_ x2 _ F(xI, tl, t2J , tr_,::,

III b) If x2 F/x_ ' :c' :2 .... t th,:_- ,":'

._'x&_ " - ._.h %:_t I. ¢. _ tx ° t

_ch %f the _ic:_ v---._._, a-d..l/i
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Example 3.1. X = RI. x _ F(x o, to, t) if and only

if IIx - Xo[ $ u(t - to) for t - to _ T > O,

ix - Xo[ _ a T + _(t - to - T) for t - to _:T.

If 0 <a < b (figure i),

and _ but not 3b.

zf 0<p<a (flg_re 2),

and _ but not 3a.

The independence of axiom IV is proved by the next example.

the system satisfies axioms I, 2, 3a,

the system satisfies axioms I, 2, 3b,

_Example 3.2. X = RI.

x
o

F(_o, t o, t). (x}= [_)}. (t _ to).

be relation between x and x is
o

i i
- =-- + t - t for x >0X X O Xos

O

I i (t for x < 0." F " " to) Xo'
O

The re fore

X

o

x

1 - Ixl (t - to)

i i
which tends to infinity for t - t -_--, and for t _-t - --

o ixl o Ixl
there is no point x° satisfying the axiom IV, in spite of the fact

that all the other axioms are obviously fulfilled (figure 5)-
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_. Properties of the attainability function.

Eemma 4.1: The attainability function F(x, to, t)

semicontinuous in the triple (x, to, t).

This follows directly from the inequality

is upper

p*(F(Xo, to, t'), F(XO, to, t))

p*(F(, o, to, t'), F(.o, to, t'))+

+ p(F(Xo, to, t'), F(Xo, to, t)).

Indeedj given xo, to3 t and e > O, one can find 51 > 0 such that

E
for It' - t I < 51 the last term is less than _ and then find 52

E
such that the first term of the right member is less than _ for

P(Xo3 Xo) < 523 It° - tol < 52j uniformly in the interval

It'-tl _i"

Lemma &.2: If X and Y are complete locally compact metzic

spaces, and if the function F: X -*_(Y) is upper semicontinuous in

the sense that given x o ¢ X,

p(x, Xo) < 5 implies p*(F(x),

Fm _(X) _(.-'_(Y) defined by

¢ > p, there is a 5 > 0 such that

F(Xo)) < E, then the function

F(A) = U F(.)
x£ A

(A( x; A i _)

is upper semicontinuous for compact sets; more exactly, if A o C X is

compact(and non-empty)# then for any c > 0 there is a 5 > 0 such that



p-(A,*o) < _ _lles p*(F(_),F(_o))< _.

Proof: The conditions for upper semi-continulty can be written

•(s6(%))C sc (F(_o))

respectively

F(Ss('AO) ) C SE (F(A o) ).

Each point x ¢ A has a nei6hborhood V(x)
o

1'CvCx))CsECF(_))Cs_CFCAo))._e ,et

such that

vo - u v(x)
xEA o

is open and contains the compact set Ao, therefore there is a 5 > 0

such that Ss(Ao) (_ VO. Hence

7(SB(Ao))C F(vI) -- u F(Y(x))C S_(F(Ao)).
xcA

o

_'heorem _.1: If AOC X,

and for any pair t o e To,

the attainability function

TO C R,

tI £ TI

TIC R are compact non-empty sets

the relation to _ tI holds, then

F(A o, To, TI) = u F(x,to,t)
x¢ A

o

t o • Tc

te TI



m

_,_,_ ,_,_-_o_tin.o_at (Ao,_o'TI)_.o_ _ct1.,,,i,_ %, %,

TI and c >0 there is a _ >0 such that

p*(A.Ao)< _.p*(_.%) < 8."*(=i'=i)< 6

_Av

,*(F(A.=o'q)' F(Ao'%' %)) < _"

_aim is an i_nediate consequence of Lem-_ _.2. It obviously

can be formulated in a little more general way, taking in the (to, tl)-plane,

instead of the rectangle TO X TI, ar_v domain D such that for any

p_Ir (to, tl)¢ D the relation to g tI holds.

XJma &._. If

_, closureo_ s,(x)

A C X is co_pact s there is an ( >0 such that

is compact.

Proof: X being locally compact, each x ¢ A has a neighborhood

V(x) with com_ct closure. From U V(x) it is possible to select a
n xEA

finite covering of A C U V(xi). Then Vo = U V(xi) is an open set
i=l i=l

with compact closure. There is an e-neighborhood of A contained in

•Vo

compact.

_mm _._:

c > 0 such that if

If AC X is not totally bounded s then there is an

p'(A, B) < c, then B is also not totally bounded.
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(A set is called totally bounded if for an_ c > O it can be covered

by a finite number of sets of diameter less than ¢ ).

Proof: Assu=_ p*(A, B)<c and B totaZZybo_ded, it

ie possible to cover B vith a finite number of balls of diameter _ :

hch point ot a ta at diltance less than t fr_ ioae _ St(xi)

a_d therefore at distance less than _ from x 1. Xn consequence

an_ this can _e done vith any E > 0. Therefore A is total3_ baunded,

contrary to the h_pothesis.

_eorem _.2: If x c X, tI • O, and Y is the attainability function

of a generalized control system, then Y(x, to, tl) is ece_act.

Proof: F(x, to, tl) is closed by axiom I, so that it has to

be prove_ that it is totally bounded. The set of values of t c [to, t 1]

for _ich F(x, to, t) is not total3_y bounded (assualng it is non-empty)

has a greatest lower bound t_o In any neighlx)rhood of tin, there

are values t', t" such that F(X, to1 t') is totally bounded and

F(x_ to, t") Is not. By continuity of F(x, to_ t) vith respect to t

and for a_y given c > O_ the neighborhood of t_ can be chosen so that

for any value t of it, p(Y(x, to, t*), F(x, to, t)) < _. Assuming
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F(xs to, t m) totally bounded and therefore compact, this contradicts

Lemma 4._. Ass_uning Y(x, t o, t*) not totally bounded, it contradicts

Le_ _._. _erefore t* does not exist and as F(x, to, t) is com-

pact for t = to, it is also co_f_ct for all t >t o .

_heorem _._" If A C X is compact and t • to, then F(A I to, t) is

compact.

Proof: _he set F(x, t o , t) is compact for each x ¢ A and

by Lemza _.3 there is a neighborhood W(F(xs t o, t)) with co_pact closure.

B_ the upper semi-continuity of the attainability function (axiom VI)

there is a neighborhood V(x) such that

As A is c_npact there is a finite set
n

that v o - u v(x i) )A. _ere_ore
£=1

_CvCx), to, t)C wCFCx,t o, t)).

x i ¢ A, (i = 1,2, ..., n) such

n

_'(Vo,to,t) - _._'(vCx_.), to,t) ) F(A,to,t)

and the set F(A, to, t) is contained in the compact set

n

l=l

and is totally bounded. _e proof will be complete by showing that it

is also closed.

11"y±cF(A, t o, t), (i=i,2,3,...),and llmyi=yo,
i-.-b

there are points x i £ A (i = 1,2,3, ...) such that Yi £ F(Xi' to' t).



-12-

]_rcompsctness of A, some subsequence xI converges to some xo ( A;

from the upper seml-continuity and closedness of Y(x, to, t), the

result ¥o ¢ F(Xo' to' t) is easily obtained.

Corollary _.i: If A is totally bounded, so is F(A, to, t). Indeed,

is compact and F(A, to, t) is a subset of the compact set

rCZ, to, t).

Corollary _.2: If AC X is compact, ToC R is co_ct and T_ R

im coml_ct and such that t o • t for any pair t o ( To, t ¢ T, then

F(A, To, 2) is also compact.

The _roof is easily obtained replaclng "x ( X" by

"(x, to, t) ¢ X X R2" in the proof of Theorem 4.3. It can even be

generalized to the case (to, t) ( V( R2 such that if (to, t) ( V,

then t • t.
o

Theorem _._: If A_ X and ToC R are compact sets, then the attain-

ability function F(A, To, x) is continuous in _, vhere it is defined

(i.e. for • _ all t o (To).

Proof: From Theorem _.i it follovs that, given T a
0

t o c TO and given ( >0, there exists _ >0 such that for

J_ -Tol <5 and • a an toe To,

p*(F(A, 2o, _), F(A, To, _o)) < _,
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so it remains only to prove the opposite relation s

Y(A, %, _)) < _.

For any point x o ¢ F(AI T O , _o )

that for IT - _ol < 5(x o) and • • all

p*(_(A, %, =o)'

there is sc_ne 5(Xo) such

t o E To,

P(=o' F(A, %, =)) < _.

Indeed, to prove this it suffices to take x ( F(A I To, _) in the

following _y:

if • >To, take x ( F(Xo, To, T) C F(A, To, _);

if • <To, take x • F(A, Tos _) and such that

which is possible by axiom Ill b;

ttt) if • = T0, take x = xo.

=o • _(x, _, ,o),

In all three cases,

p(x s Xo) _0 and

-, m implies
o x -+ x o _nich proves that

I_ PCFCA,%, =), =o) " O.

ElOW s_pose that lira P*CFCA, TO, _o ), F(A, TO, _)) = 0 is

false. _1_en there are sequence ° _i -+Xo and x i ( F(A, To, Xo ),

(i = 1_2,3, ...) such that P(Xi, F(A, To, xi ) > a > O. By compactness,

the sequence x 1 has a limit point and some subsequence

x_ -_x o _ F(A, To, T o). But then there is some n such that for i' >n,

p(x_, x o) < a _ in contradiction with_ pCxo, F(A, %, _) <_

p(=_, F(A, T, _)) >=.
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_emma _._: If the function F: [t o , t 1] -_ _(X) is continuous and

F(to) is connected, then Y([tol tl]) is a continuum (compact and

connected).

Proof: To show that it is comt_act, consider a sequence

xIE y([to, tz] (i:Z,2,3, ...). 0b_ously xIc F(_i), _i" [to' tl]

and in order to prove _hat the sequence x i has a limit point one may

&SS_ %i "_ _0 for i -_ _. Nov

_(xi, _(_o)) ' P(_l' F(_l)) ÷ P(F(_I)' F(_o));

the first term of which is zero and the second tends to zero by continuity.

Hence

li_P(_i'F(_i))" o.

As F(Xo) c _(X) is compact, almost every x I belongs to some compact

neighborhood S_(F(_o)), which proves the existence of a limit point

x° c F(_o)C F([t o, tl])-

In order to prove that it is connected, assume that

F([to, tI] = F1 U F2 is a separation (i.e. FI and F2 are closed and

disjoint). Consider F([tol t]) as a function of t: for t = to it

is connected, for every t £ [to_ tI] it is compact and it Is continuous

in t (which follows easily from the continuity of F(t)). ,Voreover_

it is nondecreasir_: if to -_ t' _ t" then F(t') C F(t"). Therefore



Y(t o) C F 1 U F 2 and as Y(to) is connected one may suppose that

=(to) (

Divide the interval [tot tl] in tvo sets: those values of t

for which F([to, t])_ F 1 and those values for vhich Y([to,t]) N Y2 _ _.

It is easy to see that because both sets are closed and supposedly non-

empty, they define a sel_ration of the interval [to1 tl] a _nich is

absurd because [tos t 1 ] is connected.

An immediate consequence of this lemma is the folloving theorem.

Theorem _.5. If A_ X is a continuum_ t o • t 1 and F(x s to, t)

&ttair_bility function s then X(A_ tos [to_ tl] ) is a continuum.

the

_. _he attainability function for t < to.

The domain of definition of the attainability l_unction

Y(x, to, t) can be extended in a natural ray for the values t < t o .

Almost all basic properties are maintained; the only exception bein_ the

. continuity condition which is not satisfied in the strong form of axiom V.

In order to distir_uish betveen the function al_ad_ defined and

the extension to be defined nov s the notation G(x, to, t) viLY be used

for the extension.

Definition: The function

_(X) is defined by

G(x, to, t); {x E Xj t o c R; t • Rj t _ to} -,

y c o(x, to, t) <--->x c F(y, t, to).

Note that the relation between F and G is reciprocal s but

they are not "inverse" functions of each other.
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proposition _.1: If x G X and t ° • t,

closed non-e_ty subset of X.

then G(x, t o , t) is a

Proof: Suppose Yi G O(x, to, t)

lim ¥1 " y" _en x c F(yis t I to) and

(i - 1,2,3, ...) and

P(X,F(Y,t,t 0)) ' p(x,Y(yi, t,t 0)) ÷ p*(Y(yi, t, to), T(¥1t, t O) ).

xov, p(x, s_(yi, t, to)). o and I_ p-(1,(_l,t,to), _(y,t,to)) - 0,
_..-i m

therefore p(x, Y(y, t, to)) -0. As Y(y, t, to) is closed,

• ¢ F(¥1 tl t O) aml y c G(x I to_ t). This proves that O(x_ to_ t)

il cloud. _at it is non-e_pty follovs from axiom IV.

Proposition _.2: G(x, to, to) - (x}.

_roposition _._: If x o c X and to _ tI • t2, then

e(xo, t o, t 2) _ u o(_1, t 1, t2).
x 1 E G(Xo, to, tl)

Proposition _._: Given x E X, to • tl, there exists a y E X such

that x c O(y, to, tl).

proofs of these propositions are straightforward.

The function G(x, to, t) is not, in general, continuous in

t. A counterexa_ple follows, in which the set G(x, to, t) becomes

unl_unded.
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Example 5.1:

for x > 0

for x • O.

_. (eee rig. _)

a(_, _, t o) -

f LY,_1 • • •

[y, -) • ........

_OOOO00OOOQO

for _>0, ¥(t-to) <1

for ¥ > O, ¥(t-to)• 1

for y • 0.

_emma 5.1: If Yo ¢ F(Xo' to' tl)t tl _ to' then the set

Ao -_(%, to, Ito, tl])n o(yo, t 1, Ito, t 1 ])

is a continuum# " .e. compact and connected.

Proof: Consider the set

*(,)-_(%, to, ,)n G(yo, t1, ,)

for t o • g • t 1. It is non-empty by virtue of axiom III b. It is com-

pact beaause it is the intersection of a co_pact and a closed set. It

will be proved that it is continuous in T I i.e.
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p(A(_), ,(%)) - --.-{p-(A(_), *(%)), p'(X(%), A(T))} _o

for _ -_ _o"

Xt s for

and z I ( A(_£);

I - 1;2;3 , ..-; z I -* Zo; _1 -*Iro' Iro; Irl ¢ [top tl]

then by continuity of the attafnabLtity function

So ¢ T(Xo' to' _o)"

_sldes,

, i • o(_ t I, _i)

ts equXvalent to

Yo ¢ It(z1, _1' tl)

and bar semi-continuity and closedness of F,

Yo ¢ _(Zo' _'o' tl)

o1"

zo' _¥o' tz' 'to)'

so that

zo c A(_o).

This proves that
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11m p_(A(_o) , A(_)) - 0

@

it is sufficient to shov that given z° ¢ A(To) and _t -_o

(i - ij2p_ I -.-i _i >tO) there exl8"_ zi c A(_i) such that zi -_z O.

_e eases _i _ _o and _i < "0 wiLl be treated separatel_ and the

general case follows as a combination of both.

Suppose _i >'o" 5_e set

r(So' "o' "i)n o(ro, %, "1)

A(,I)J it 18 non-empty because ¥o ¢ F(So_ _'o* tl)'

aA7 point of this set_ it followi that

11as t, l_Y(So, _o''I ) " [zo)"

Buppose nov Tt < 'o and take

zl ( O(So" "o: "t ) n F(Xo, to, _i),

which is a non-empty subset of A(,t). As s t ( F(Xo, to, [to, tl] )

and this set i8 compact_ the sequence z I has some limit point and it

may be assumed z t _. It willbe proved that _ = zo. Indeed_

z o • _(zi, "I' "o )

and from the semi-continuity of the attainability function_
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=o ¢ ]r(r_,_o, _ro)" (r,}

fO.1_1.0v8.

_Tlng ])roved that

fo:Llov8 from Lem_ ]_._.

AC_) is continuous s the desired result

2beorem :_.:L: It' O(Xo, to, _o )

(}(X t t I _) ill upper semi-continuous at

• >0 there is a 6 >0 such that for

lit - ,'r° I < 8

is compact and t o i; Iro_ the f_nctLon

(Xo, to, _o) P t.e. _Ten

p(x, xo) < e_, It - %1 < ",

p,(o(z, t, _), °(Xo' to' _o)) < '"

Proof. If the theorem _re false s it vould be possible to deter-

aline mequenees

xt -_Xo' tt -_to' _1 "_o' t£ • _1' Yi ¢ G(x2' tl' zt)' (il- 1,2,_, ...)

such that the sequence Y:L has no l_lt point belongtn8 to O(Xo_to, To)j

it vi_ll be proved that this assumption leads to a contradLctLon.

Consider f_t the case vhen the sequence ¥1 has some l_tt

point Yo" Taking a Bubsequence one may vrLte Y$ -_ ¥o and £t wl_ be

])ro_4 _t _'oc o(xo, to, _o)" _c_ec_,



_m

_pllem

xi E F(Yi, Ti_ tl)

and by the upper semi-continuity and closedness of F(Yol _ol to) I

xo E Y(Yo''to' to)"

NOV the case of Yi not having any l_t point has to be ruled

The set GO - O(x o, to, To) is compact by hypothesiss so that the

l- z(oo, _o' r_o' to])

iS &lIO Compact and x O E HI (flg. _)° _aerefore there is some sphere

Z(a I r) of center a and radius r contain4ng H in its interior.

x i -_x O it may be assumed that x i is also interior to r(a, r).

Buppose the sequence Yi has no limit point. _en, disregarding

a finite number of terms, Yi is exterior to Z(A, r). Nov, the set

F(71' _I" [Ti' ti ]) n O(zi, ti, hl, tl] )

is a continuum Joining Yi and x i (Theorem _._); therefore it _ets

r(a, r) in some polnt z I and

"-i¢ O(xi' ti' _:)



_m

for io=e _ ( [_i' tl]" But

so that for some subsequence

z i belongs to the comt_ct set _-(a, r),

x i (F(:i, T:, ti)

i_plles, as before

Xo" _("o' _o' to)

and

"o" °(_o' to' "0)" %"

thst

I_l_lylng the elementar7 properties of the function Oj one nees

[_o' to]) =

[_o' to] ) = s.

_his last set is contained in the interior of Z(a, r) and so must be

$o' but on the other hand z i c _-(a, r) implies that z ° lies on the

(boundary of that) sphere, which gives the desired contradiction.

Remark: If _o _ to and AC X and G(A_ to, _o) are compact_ then

O(As t o, _) is compact for all _o _ _ _ to" Indeed

o(,, t o, _)( F(O(A.t o, _o)' To' _)'
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which is compact. G(A, to, l) Is therefore totally bounded, and as it

is closed, it is compact.

Corollary 5.1: O(Xo, to, _o )

the preceding theorem

is continuous at t o = To. According to

p(o(x, t, _), G(=o, to, to)) = o(o(=, t, _), xo) -

= p*(G(x, t, =), o(=o, t o, to)) -. o

for X _X01 t -_t01 C -_t01 C • t.

Theore= _.2: If O(Xo, to, Co) is compact, t o • Co,

tion G(Xo, to, c) is continuous in c at c = c 0.

then the func-

Proof: If To = to

corollary, so that T ° < to

this result is included in the preceding

may be assumed. For T -_ To,

p-(O(Xo, to, T), O(Xo, to, To)) _o

is a consequence of Theorem _.1, and only

p*(o(xo, t o, To), O(Xo, to, T)) -.o

remair_ to be proved. As G(x o, to, T o) is compact, this is equivalent

to the condition: given any Yo ¢ G(Xo' to2 Xo ) and any sequence
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_i "_o' (_i < to' i = 1,2,3,

such that Yl -_yo for i -_=.

in the following w_y:

..., there is a sequence Yl ¢ G(xo'to'_l ))

This sequence Yi is easily constructed

i) If xi < Xo' _e

it) If _i > Zo' take

iii) If _i = Zo' take

Yi c o(yo, _o' _l)C o(_o, t o, _l)"

Yi c O(Xo, to, Ti) n Y(y o, _o' _l )"

Yi =Yo c O(Xo, to, _o ).

In all three cases, for i -_m, xi -_Xo and by continuity of F(x, t, _)

or O(x, t, _) (at t = • in this last case), the result Yi _ Yo is

obtained (see fig. 6).

Theore= 5._: If AoC X and a(Ao, to, _o) are co_ct, _o _ to and

¢ >Os then there is 8 >0 such that

p-(a(A, t, _), G(Ao, t o, _)) <

for all A_ Xs t _, such that _(A, Ao) < 5,

c [_o' to]"

Briefly speakir_, as long as G(A, t, • )

semi-continuous in

It - tol < _,

is compact, it is upper

(A, t) uniformly in any finite T-interval.

Proof: Assuming the theorem to be false, there are some sequences

Ai_ X, ti -*to' zi _ [Xo' to]' _i _ ti such that _*(Ai, Ao) -,0 and



p*(O(AI,tl,_i),O(Ao,to,TI))>a >0 (i = 1,2,3,...).

This means that there are points x i ¢ A i (i = 1,2,3, ...)

such that

_(G(x1' ti'"i)'°(Ao'to'_i))>a.

As p*(Ai, Ao) -, 0, one may assume that all A i (i = 1,2,3, ...)

are contained in some compact set B. Therefore some subsequence

x i -_Xo, where x° ¢ Ao. Taking subsequences, one may write also

"i -*_' E [_o' to]"

Theorem 5.is therefore

im p.(o(xl,tl,_i),O(Xo,to,_,))-0.
i-era

Z_t as x ° c Ao, also

n_ p*(o(xi, ti, _i),°(Ao,to,T,))_-o.
i--Din

_r Theorem 5.2,

n= p.(o(= i, ti, _l), °(xo, to, _i))" 0

in contradiction with the assumption.

Comparison of the F and G-functions. Propositions 5.1, 5.2, 5.3 and

5._ and Theorem.q 5.2 and 9-3 show that, as long as O(x, to, t) remains
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totally bounded, it satisfies all the axioms of the function F(x, to, t),

but G(x, to, t) may become totally unbounded (example 9.1), thus vio-

lating the continuity in t.

Even disregarding this difference, it is confusing to treat F

and G as the same function, because the axiom III (seml-group property),

satisfied separately by F and G, give rise to the following weaker

relations when combining both functions:

o(_(x, t o, t2), t 2, tl) 3_(x, t o, tl)

G(F(x, tl, t2) , t2, to) _G(x, tl, to)

_(o(x,t2, to),to, tI) 3G(x,t2, tI)

_(G(x, t I, to), to, t2) 3F(x, t I, t 2)

t o _ t 1 _ t 2

where the inclusion sign cannot, in general, be replaced by the equality

Bign. The proof of these relations is obvious (fig. 7)-

6. Trajectories.

XJmma 6.1: Let F(x, t, T) and G(x, T, t)

functions of a generalized control system, and 9:

necessarily continuous mapping such that

_(%) c F(_(t), t ,tb). Then _ --_(t)

be the attainability

[to, tI] -_X a not

to _ ta_t h _ tI imply

is continuous.

Proof: Suppose ta fixed and t -_ ta, (t, ta £ [to, tI])..

Then:
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i) if t>t,

axiom V;

_(t)c F(_(t),ta,t)

it) if t < ta, q)(t) : G(q)(ta) , ta, t) and _(t) -_q)(ta) by

Theorem 5.2.

Definitions. A trajectory of a generalized control system is

a "_pping _: [to, t 1 ] -_X such that t o • t a _ t_ _ t 1 --=>_(tb)¢ F(_(ta),ta, tb)-

A trajectory _i: [tal t_] is a prolongation of the trajectory

_2: [tcp td] if [tc, td] ( [ta, t_] and _l(t) = _2(t) on [re, td].

Sometimes it is convenient to consider a trajectory in the state-

time SliCe ,: [to, t 1] -*X x It, defining ,(t) = (_(t), t). In the

state-time space a trajectory is a Jordan arc. Zudeed, it is continuous

and without multiple points.

As usual in dynamical systems positive (and negative) half trajec-

tories starting at some (Xo, to) will be considered sometimes.

Theorem 6.1:

X 1 ¢ F(x O, t O, tl),

[to1 t 1] such that

If, for a certain generalized control system_

then there exists a trajectory _(t) defined in

_(t o) =x o, _(t z) -x z.

Proof: Assuming, for simplicity, to = 0, tI = i, a traJec-

tory satisfying the desired boundary conditions can be constructed in

the following _y:

For t = i/2,:/_,3/_, :_, 3/8, ...,

_(t) can be chosen successively such that

P the values of

2(I, •..
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definir_ _(t) for all binary fractions and obviously satisfying the

definition of a trajectory. For the remaining values of t I

fl [F(_(t'),t',t) n G(_(t"),t",t)] = K(t)

t'_ t" binary fractions

t' <t <t"

not void because K(t) is the intersection of compact sets with the

finite intersection property. It is easy to see that K(t) is a single

point s but taking anyway _(t) • K(t)_ this satisfies the relation de-

fining a trajectory. Indeed, if for example ta < tc ¢ [0s i] are not

birAry fractions, there is a binary fraction _I such that ta < _ < tc.

Therefore

 Cto)• KCto)< to),

from which it follows that

• to).

Theorem 6.2 (B_rbashtn) : If _i(t), (i = 1,2,3, ...) are trajectories

of a certain generalized control system, which are defined in the inter-

val TO • t -_TI,

some subsequence

and if _i(To) = x I -_x ° for i -_, then there is

_ij(t) converging to a trajectory go(t):



To _ t _; TI,

and the convergence is uniform in the interval [To, T1].

Proof: As xl _x o it my be assumed that all x i ¢ S( X

where S is compact, and hence _i(t) _ St where St = F(S, To, t)

is al,o compact for anz t _ [To, TZ].

Takin_ any countable dense subset [ti] of the interval

%+%
[To, TI], for example to = To, t I = TI, t2 = 2 '

tn - TO + -R(T I - To) , ... for any value t it is possible to choose a
2q n

subsequence _i such that _ijl n(tn) converges. Furthermore _ij, n(tn)

can be chosen to be a subsequence of the one corresponding to tn. 1. _en I

according to the well known classical procedure, the diagonal sequence

_ij,_ converges on the whole dense set [tn] , to values _hich will be

denoted by _o(tn).

Consider two values tr < is" It will be shown that

_o(ts) , F(_o(tr) I tr, ts). Take _i(t) to be the diagonal sequence de-

fined above which converges pointwise to _o(t) on the dense subset [tn].

Given any c > O, there is nI such that p(_i(ts), _o(ts) ) _ E for

all i • n 1. A value 5 > 0 can also be determined such that

p*(F(xj trl ts) , F(_o(tr) , tr, ts) _ ¢ for p(x, _o(tr)) • 5. Corres-

pondingly I for some n21 p(_i(tr)_ _o(tr)) _ 5 for i • n2. Hence_

for i • max(nl, n2) :
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P(_o(ts), F(_o(tr), t r, ts)) _ P(_o(ts), _i(ts)) +

+ p(_l(ts), F(%(tr), t r, ts)

P(_o(ts), _i(ts)) + P*CF(_i(tr), t r, ts), F(_o(tr), t r, ts))

E £
f+_=E.

Therefore p(_o(ts), Y(_o(tr), tr, ts) ) = 0 and _o(ts) ¢ y(_o(tr), trots),

At the remaining values of tj @o(t) can be defined by the

_me procedure used in Theorem 6.1, obtaining thus the trajectory _o(t)

defined in the whole interval [To, T1].

z_ re.-Ir,_to prove that _±(t)-,_o(t) u_ror_y (unt_ nor

the convergence has been proven only for the dense subset'mentioned

above). Assuming the contrary, there is some subsequence

oo_spond_g va:ues tj c [To,TI.](J- 1,2,3,...)

and _Ij(tj) -_y _ _o(to) for J -,-.

to _ TI, take a_ fixed value _, to _ _ _ Tl;

t o m T, take 1 = T1. Dlsregardin6 a finite number of terms, It may

be assumed that tj < ,. Hence, (pO(_)C F(_Ij(tj) , tj, ,), and by

upper semi-cantinuity,

_ij and

such that tj _t o

%(,) c F(y,%, _).

Therefore
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%(t o) - 1_ %(_)_ 1_ F(y_ t o, _)_ y,
o o

which contradicts the assumption.

_eorem 6.7: If _i(t), (i = 1,2,3, ...) are trajectories of a cer-

tain generalized control system, which are defined in TO _ t _ TI,

•_ If %(_i)_=I for i _-, _ in_dltion G(_I,%, %) is

compact, then there is some subsequence _Ij converging uniformly to

a trajectory %(t).

_e proof is the same as for the previous theorem.

_heorem 6.k: If _i(t)

and if 9i(To)_x 0 for

to some trajectory q_o(t)

any finite time interval.

are trajectories defined for t c [To, + -),

i -*m, then there is a subsequence converging

(t _ To) , and the convergence is uniform in

_heorem 6._: If $i(t) are trajectories defined for t c (-_, TI] , and

if %(_o) _ =o for i _., and if G(=o, _o' t) is_o=_t for _

t • TO then there is a subsequence converging to some trajectory q_o(t)

• (t _ To) , and the convergence is uniform in any finite time interval.

'mzeorem 6.6:

O(x o, t o, _)

then there is a trajectory _(T) defined in

Xo, to which is unbounded for • -_tl,(_(_)

-* tl).

If x ° e X and for a certain general control syste,.,,

is compact for every T, tI <T S to but not for v = tl,

(tl, t o ] passing through

has no limit point for



Indeed, it is sufficient to take a sequence x i ¢ O(Xo, toJ t 1)

without linit point (this is possible because O(Xo_ to, tl) is not

%otall_ bounded) and a corresponding sequence of trajectories _t(t)

_oinir_ (t) which converges for every t ¢ (tll t o ] defining a

limit trajectory _o(t), (t 1 < t • to) , but obviously for t = t 1

there is no limit point.

7. _variant sets. Definitions.

The well known definitions given in the theory of d_a_cal

syutem can be applied in a strong and a weak form to the generalized

control systems, according to whether it is required that all or only

sons of the trajectories starting at a set, have a certain behavior.

In all the following definitions, a certain generalized control

system is supposed to be given by its attainability functions, F(x, to, t)

and O(x, t, to).

Definition 7.1: The set A_ X is called strongly Invariant, if for

all tI _ to, F(A, to, tl)_ A and G(A_ tl, to)_ A.

Definition 7.2: The set AC X is called positively strongly invariant,

if for all tI • to, F(A, to, tl) C A.

Definition 7._: The set A _ X is called negatively strongly invarlant,

if for all tI _ to, G(A, tl, to) C A.
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Remark: It is easily seen that these definitions could be given in the

following equivalent _y: for every x ¢ A, F(xl t O, t 1) C A and so

on.

Definition 7.1 is also equivalent to:

_(A, t o, t 1) -O(A, t 1, t o) = A.

_deed, AC oCFCA,to, tl), t1, to) C OCA,t1, to)C A give8

A- G(A, tl, to) and similarly for F(A, to, tl).

_efLnitLon 7:_: _e set A_ X is called weakly invariant, if for

all t 1 _ t o _ _u x E A, _(x, t o, t 1) n A t _ =_

o(_, t 1, t o) n A t _.

Definition 7._: The set A_ I is called positively weakly invariant,

if for all t 1 , t o and all x, A, F(x, to, tl) fl A_.

Definition 7.6: The set A_ X is called negatLvely weakly invariant,

if for all t 1 _ t o and all x c A, O(x, tl, to)'fl A _.

_neorem 7.1. (_arbashin) : A necessary and sufficient condition for a

closed set A to be positively weakly invariant, is that for any

x o c A and any to, there exists a trajectory _o(t) defined for

t £ [to, _), starting at _o(to) = x o and totally contained in A.

t = O.
O

The sufficiency is obvious; to prove the necessity, suppose

Assuming A is positively weakly invariant, a trajectory



throush x o will be constructed, which is contained in A for all

t _to=0.

In the interval [0s 1] consider the following sequence of

trajectories.

AS F(Xo, 0, i) 0 A /_, there exists a point

Xll ¢ Y(Xot 01 1) N A and a trajectory 91(t ) such that 91(0 ) = Xol

_1(1) = .11.

Bimtlarly it Is possible to determine x21 ( Y(Xos 0, 21-) N A

and *22 ¢ Y(x21* 21-' 1) N A, and a trajectory 92(t ) such that

92(0)" *o, 92(_)" *_, 92(1)" *_"

In t_ _ _ _ deter_ne 9n+1(t) suchthat 9.+i(0)- 0

and for t - _, (p - 1,2, ..., 2n), 9n+l(t ) belonss to A.

Accordtr_ to Theorem 6.2 some subsequence of the _i converge

and define 9o(t ) t, the interval [0s 1]. By construction_ 9o(t )

belonss to the closed set A for all values of t which are binary

fractions I and therefore for all t ( [0, i].

The same procedure can be used to define 9o(t ) in the interval

[1, 2], and so on, on the whole real halfline [0_ _). _ts proves

the theorem.

Theorem 7.2- A necessary and sufficient condition for a compact set k

to be neEatively weakly invariant is that for any x o ¢ A and any to,

there exists a trajectory _o(t) defined for t _ (- -, tl] , endtnE

at 9o(to) = x ° and total/7 contained in A.
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The proof is the same as In the previous theorem, with the ex-

ception of the construction of the trajectory 9o(t) in each finite

InterwLl, for example [-i, 0]; thls Is due to the fact that the

theorem 6._ cannot be applied directly to pruve the conTerEence of a

|ubsequence of the _n(t), because G(Xo, to, t) is not necessarily

compact. This difficulty can be overcome by taking into account that

all the _n(t), (t E [-11 0]), belong to the compact set

F(A n O(Xo, 01 -i)1 -11 [-I, 0]). This insures the con_ergenoe to

sore l_tt trajectory _o(t).

8. Generalized Liapunov' s functions.

.Definition 8.1: Given a scalar function v(x, t)

region GC X x R, and a closed set AC X x R,

will be called "positive with respect to the set

(A)") if:

defined in an open

the function v(x I t)

A" (written: "positive

i)

ii)

Ill)

O)A

v(x, t) is lower se_tconttnuous, i.e. for any sequences

xi .%, t I _ to (i - 1,2,3, .--L 1__ .(x i, t 1)• .(x o, %).

,CX, t) • 0 for x E A.

IV) v(x, t) >0 for x IA"

Definition 8.2: The scalar function v(x_ t) defined in an open region

G C X × R, Is called positive definite with respect to the closed set

AC X × R (written "positive definite (A}"_, if



t)

ti)

Ill)

.)A

,(x,t) i. poslti_ (A)_

there exist two continuous and strictly increasing functions

.l(r) and .2(r) o_ the _ var_b_ r l 0 such t_t vl(O) --

•2(o) - o _d _or x f ,, ,l(r) • ,(x, t) , ,2(r) _ere

r. o((x, t),X), O bei_ the elsta,ce in x x a.

Definition 8._: The scalar function v(x s t) defined in an open region

G ( X X R_ is called positive definite with respect to the closed set

A( X a if v(x s t) is posltlve definite with respect to the set

AX R.

Definition 8.5: The upper and lower right total derivatives of the

function v(x_ t) with respect to the generalized control system charac-

terized by the attainability function F(x I t# g) are defined by:

T÷(xl t) = llm l.u.b.[V(F(x'tJ)'g) - v(x.t); t < • < t • 5),
6_0 + • -t

__+(:, t)- l_n .z;'_.b. {v(_(x.t._)._) - ,(x.t);
15 -*0" • - t

t <_ <t ÷ 5}.

Theorem 8.1: If the set AC X Is positively _ee.kl_ lnvariant_ so is

its closure A.

Proof: Assume x oe _, x i¢ A, (1 = 1,2,_, ...) and x l

Then, for any to, there exlst positive half trajectories _i(t),

X 0 •
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(t • to), such that _i(to) = xi and _l(t) ( A. _ Theorem 6._

there is a limit trajectory _o(t); therefore _o(to) = Xo,

9o(t ) • A and by Theorem 7.1 A ls positively weakly invarlant.

Theorem 8.2: If AC X is closed, v(x, t) is positive (A) and for

all x belongln8 to the boundary of A and all t s _+(x, t) < 0t

then A is stronsly positively invariant.

Proof: Assuming the contrary, there are some Yo ¢ A, t o <

and a trajectory _(t) such that _(to) - ¥O _ _(T) _ A. Define

_O " 1.u.b.{_; _([toJ _])C A}. Then xO - _(_o) ¢ A because A is

= T @
elo,ed, but there is a sequence xn _(_n) _A with _n _ o

(n - 1,2,3, ...).

Therefore x o belongs to the boundary of A,

but V(Xnt t') >0 for any t, t' and

-- "(_n' t') - _(_o' t)
lira t' - t _ 0, for any

which contradicts _+(Xo, t) < 0.

v(xo, t) • 0,

t I -_t

Theorem 8._: If A( X Is closed and positively strongly invsrtant, and

if ¥(x t t) is positive (A), then _(x, t) & 0 holds for any (x, t)

such that v(x, t) = 0.

Proof: If v(x, t) = 0, then x c A and F(x, t, _) c A,

(, > t), SO that



Lu.b. vCY(x, t. T). _) + v(x. t) • O.

_he proof followB then from the definition of _+(xj t).

Theorem 8._: If AC X is closed, v(x, t) is positive (A) and for

all x belonging to the boundary of A and all t t _÷(x a t) < 0 t

then A is weakly positively invariant.

Proof: Assume the contrary. Then there are Y ¢ At to • _1

such that F(¥_ tot T1) N A - _. As both sets are closed t there is

some neighborhood of F(¥ t tot _1) which does not meet A. BY continuity

of F I there is an Interval such that F(y t tos _) N A - _ for

s_ <s •_1" Suppose _o

this condition (this value

to, "o) n A

• (x,_o) •0. _t for

v(x', t) >0 fora,_

is the minimum of the values _ satisfying

_o exists and _o _ to)" _hen

Let x¢ y(y, to, _o) NA. Then x¢ _A and

_o < _ •_1 t Y(xt _o' _) nA-_ and

t and x' E F(x, _o' _)" _erefore

.(y(x,"o,"),")-.(x,.O)>o
o

for _o < T • _1_ which contradicts the hypothesis _÷(x, _o) < 0.

_neorem 8._: If A C X is closed and positively weakly invariant_ if

v(x, t) is positive (A), then __+(x_ t) • 0 holds for any (x, t)

such that v(x_ t) = O.

Proof: If v(x_ t) = O_ then x _ A and for any • • t_

F(x, t,v) _ A # _. Therefore
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¢.l.b.(,(y(x. t. _). _) -.(x. t)_, S 0
-t •

Be_rk: _l_eorems 8.._ and 8._ are rea].ly extstenee theorems for T.4apunc_-

funetlons_ because functions v(x_ t) which are poeltlTe (A) ally8

• x_t, for exuple v(x) = p(x, ,).

9. 8tabtltty.

]41anFdifferent kl_lk of stability are ve_L1 knovn from the theoz7

of 47rmmtcal s_stems. In th£# lBl_r _ the most l_ortant tT_es vt_11

be eonJtdered s rather as an example than as s fu_ development of the

theory. The deftntttonJ are glven &ecordl_ to Yoshtza_ [12]; they

refer to a certain generalized control symtem characterized by the

functlon F(x I t I _).

Definition 9.1: The set AC X ls said to be untfo.rm_ strongly stable,

t1' for any c >0 there ls a 8 >0 such that F(S6(A), _, Ir) C Be(A)

for _ t I _.

Bemark: If A is unl_or_y strongly stable, then

ttve_y invariant and unifora_ strongly stable.

Indeeds_ if x o c A_

],(xo, t,

p*(F(%,t, = o

m

A ls strongly posi-

and therefore



_0 m

X_flnitlm _..2:

If for any ¢ >0 there is a 6 >0 such that if

to ¢ R, there exists a trajectory 9(t) through

9o(to) - Xo) satisfying p(_o(t), A) < c for all

The set A_ Z is said to be uniformly _ stable

p(x o, A) < _,

(Xo, to) , (i.e.

tit.
o

_rk: If A is tmlfor_ _ stables then A is positively

weak_ Invarlant.

Definition 9._: The set AC X

asymptotically stable, if for some fixed

there is s T(() >0 such that forall

r(6(,), to, t)C S,(A).

is said to be un_ormly stro_j_r quasi-

6 >0, and for a_y ( >0;

t • t o + T(¢),

_el_inltlon _._: The set A_ X is said to be uniforml_ ve_Llc.l7 quasi-

Ss:]mZ_ott_J_ly stable, _l" for some fixed 6 > O, given any pair

(XO, to) (B6(A) X R there is a trajectory 9(t),

atw.h that for any ( >0 there exists a T(E) >0

t_t p(_(t), A) < c _or _u t • t o • _(c), _(c)

from Zo_ t O,

vith 9(to) . Xo,

with the property

being independent

Definition 9.5: The set AC X is said to be uniformly strongly asympto-

ttca_ stable if it is uniformly stro_ly stable and uniformly stron_y

q_si-asymptotically stable.

Definition 9.6: The set A C X Is said to be uniformly veakl_ asympto-

tica_ stable, if it is uniformly _ stable and uniformly

q_asi-asymptotically stable.



_m

The following lemma concerning f_nctions of a real variable

wLll be needed.

Lemma 9.1: If the real function of the real variable u(t);

defined in the interval [0, e ]_ is lower semi-continuous, and at

every point of that interval the right lower derivative satisfies

_+(t) • o,

Proof: S_pome u(O) - O;

• >0, u(T) I•.

Indeed, there is some value t 1 such that

it vi_l be proven t_t for an_ given

This followu _rom the fact that __0 ÷ __ ' O.

walue t 2 such that t 1 _t 2 _T and

0 <t 1 <T and

Sere is also a

u(t 2) - u(t 1) •

In this _¥ a sequence tl, t2, t_, ... san be obtained, such that

U(tn) s U(tn) - U(tn_l)+ U(tn_l) _ U(tn_2 ) ÷ ...

... + _Ct2) - _(tI) + uCtI) - u(o)<

<_tn-tn_ 1 ÷ tn_ 1-tn_ 2 ÷ ... ÷ t 1 - O) = •_t n.



_o

If by this procedure the value t - T can be indefinitely

approached I i.e. t n -_ Ts then by the lower sem/continu/ty

u(T) " m:'"u(tn) • "_:i_ tn - ,.

In ease T cannot be approached indefinitely t there is a g.l.b.

of those values of t which cannot be passed by any such sequence t n-

Call • this g.l.b. Then there is a sequence t n -#_ and

u(_) , _ _.

_t __.1.(:) • 0 and therefore some :' ex/stsj such that • <_' <T

and _, _ <_ no that the sequence can be extended farther

than %t a@ainst our assumption. Therefore it can be extended approach-

lug T indefinitely.

Qorollar_: If u(t) is lower semi-continuous in [0a T], and

r(t) , o, then _(_) , _(o).

Lemma 9.2: If v(x) is a real, lower semi-continuous function

defined on the space X_ and if with respect to a generalized control

system a _+(x) • 0 s then the set A(X) = [xj v(x) • k}, supposedly

non-empty s is a closed positively stronKly invariant set.

Proof: A(X) is closed because v(x) is lower semi-continuous.

Assume • c A(k)# but for some t o < tl, y • F(x_ to, tl) does

not belong to A(k). Then there exists a trajectory _(t) from • ffi _(to)

to y=9(tl). Along _(t)



--+
d
4"_ v(_(t)) -

5 -.0 + 5

Besides, v(_(t)) is lower semi-contlnuous, so by the coroll_ry of

Lemma 9.1, v(y) • v(x) _ k contradicting our assumption. This proves

that for any x ¢ A(k) and t o • t, Y(x, t o , t)(A(A).

The same proof applies to the following.

_e_na 9.3: If v(x, t) is a real, lower seml-contlnuous func-

tion defined on the space X × R and if _(x s t) + • 0, then the set

A(X) = ((x, t); v(x, t) • X], ,upposed non-empty, is a closed positively

strongly invariant set.

Imm 9._:

definedon the ,pace X,

A(X) = _x; v(x) ' k),

invar_xnt set.

If v(x) is a real lower semi-continuous function

and if __÷(x) = O, then the set

supposed non-empty s is a closed positively weakly

Proof: Suppose k = 0,

fixed Xo, tot the function

A(O) = A = (x; v(x) • 0]. Taking any

u(t) -s.l.b.(v(x); x c F(Xo, to, t))

is lower semi-continuous in t. Indeed, as F(Xo, to, t) is compact,

the g.l.b, is really the minimum of v(x). As v(x) is lower semi-

continuous in x, given ¢ > O, for each x there is a 5(c, x) >0



s_ t_t _or p(x, _') < 8, ,(_') _,,(x) - c. _(_o' to' t)

be covered by a finite number of such neighborhoods, therefore there

Ss an _(c) such that for p(xe_ F(Xol tos t)) < qt

v(x') • mln v(x) - • = u(t) - _. As F(Xo, to, t) is continuous in t,

the lower semi-contlnulty of u(t) follows.

In order to evaluate the right lower derivative of u(t) at the

point tl_ suppose that v(x) attains at the point x I its minimum

in F(Xo, to, tl):

u(t I) - ,(x I) - _,{v(x); :: c _(xo, to, tz).

AS ___(Xl) _ O, there are sequences _i and ¥I'

such that _i -'t; I Yl c F(Xll tl_ _i) and

(i = i,_,5, ...)

"(Yl) " v(_z)
llm

Therefore •

_+(t I) = zi=,g.Lb.{ • ; 0<_ <o}
- 0 _0 "_1

u(_I) " u(t I)

i -_.. • - t 1

v(Yl)" "(_z)
llm

i -_.. _ - tl



proving that

t > tos and

__÷(t)_ 0. Hencej Lemma 9.1 can be applied and for aLt

.(t)- _{v(=); = G F(Xo,to, t)}__U(to).

Therefore

Taking the space

obtained.

Z(Xo,to,t) n x I _, p_v_g the _.

X x R as phase-sl_cej the following lemma is

_em 9.5:

defined on X x R_

A(X)- C(x,t)_v(x,t) , x},

weakly tnvariant set.

If v(x, t) is a real, lover semi-continuous function

a.d'It__÷(=,t)•O, t_. theset

supposed non-empty, is a closed positively

Remark: In the preceding lemmas: the function v(x)

v(x, t)) does not need to be defined on the whole space X (respect.

xxR)

(respect.

but on a domain G such that A(X) belongs to the interior of

GO

Lemma 9.6: If v(x, t) is areal# lo_er seml-contlnuous func-

tlan defined on a closed set D C X x R3 and if $_+(x3 t) i 0, if

A = {(x, t); v(x, t) _ k} is a non-empty subset of D_ then for each

(Xo, to) G A there is a trajectory _(t) such that _(to) = x°

one of the following two possibilities holds:

i)

ii)

and

_(t) ¢ A for any t >to; or

_(t) leaves A at a point belonging to the boundary

of D.
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Indeed if for each t in the inter_l [to_ tl] _ the set

{F(Xo, to, t), t] 0 A is non-empty t then the construction used in

_heorem 7.1 proves the existence of a trajectory q)(t) starting at

(Xo, tO) and contained in A for t o _ t • t 1. If this trajectory
÷

cannot be extended in A_ there are values _i -* tl such that

[_(Xo*to*"i)*"i}n, - _.

]bnoe, 9(tl) belongs to the boundary of A.

belong %o the boundary of D, then for all

Assuming that it does not

_i eufficiently near tl,

[r(_(t_),tl,"i),"_]< D.

In this case the procedure used in Lemma 9._ can be applied and

uC'i)" -inC-Cx,"i); (x,Ti)_ (FC_(t:)_t:,q),,i)]_ _(tl).

This is a contradiction, because then

{_(_(tl),tl,"i),"i}o A /_.

Therefore (_(tl) , tl) must belong to the boundary of D which

proves the lemma.

Theorem 9.1: If AC X is closed and v(x, t) is a real function de-

fined in some neighborhood of A, if v(x, t) is positive definite (A)

and _+(x, t) _ 0, then A is uniformly strongly stable.



Proof: By definition of positive definite function, there exist

two strictly increasing continuous functions vl(r), v2(r ) such that

vl(o) = _2(o) ; o _d _o_ x _ A,

Vl(p(X, A)) __vCx, t) __v2(oCx, A)).

Given a sufficiently small c > O. there is 5(g) such that

v2(5 ) = Vl(¢); indeed, v2(0 ) = 0, v2(e ) _ Vl(¢ ) and v 2 is con-

tinuous, so that 0 < 5(x) _ ¢ (fig. 8).

For P(Xo, A) < 5 and any to, V(Xol to) _ v2(5 ) = Vl(¢)-

X_mma 9. , the set {(x, t); v(x, t) _ Vl(C)} is positively strongly

invariant, so that for any t _ to and x e F(Xo, to, t),

v(x, t) ' Vl(e ). Therefore

Vl(P(X , A)) _ V(X, t) $ Vl(¢ )

implies p(x, A) -_¢, which proves that

r(Xo,to, t) _ Se(A).

_heorem 9.2: If AC X is closed and v(x, t) is a real function de-

fined in some neighborhood of A, if v(x, t) is positive definite (A)

+
and __ (x, t) -_0, then A is uniformly weakly stable.

Proof: As in the preceding theorem, there are

Vl(P(X , A)) -gv(x, t) -_v2(P(X, a)), and for sufficiently small E > O,

thereis 6(c) suchthat v2(5): Vl(_).
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_mma9.5, the set B : {(x, t); v(x, t) _ vz(c)] is closed

and positively weakly Invarlant. By Theorem 7.1, for any Xo_ to such

that V(Xo, to) ¢ B, there exists a trajectory _(t) such that

_(to) = x ° and for any t c [to, ®), _(t) e B. Therefore, writing

x - _(t),

vz(p(x, A)) s v(x, t) s vz(c),

or

p(x, A) _ c

which proves the theorem.

Lem,_ 9.7: If u(t), _(t) are real functions of a real variable

defined in the interval [0, T], if u(t) is lower semi-continuous and

_(t) i8 aifferentiable, a_a ir __*(t) _ _ then
dt '

u(_) - _(_) _ u(o) - _(o).

This is an application of Lemma 9.1 to the function u(t) - _(t).

Similarly:

iemma 9.8: If, under the same conditions, _+ (t) :_ d_(tl then
--- dt

u(T)- m(T)_ u(o)- m(o).

Theorem _.__: If AC X is closed and v(x, t) is a real function de-

fined in some closed neighborhood Ss(A), if v(x, t) and -_+(x, t)



are positive definite (A), then A is uniformly strongly asymptotically

stable.

Proof: Ry Theorem 9.1, A is uniformly strongly stable, so

that only the quasi-asymptotic stability has to be proved.

By definition of a positive definite function, there are in-

creasing continuous functions Vl, v2, Wl, w2 such that

•i(o)- v2(o)- _i(o)- ,,2(o)- o _ rot x 4 A,

v1(p(_,a))_ v(x,t) _ v2(p(x,A)),

v1(p(x,a))_ - r,+ (x,t) • _2(p(x,a)).

Besides, it may be assumed that

vl(_) -_v2(5') - a

is finite.

Given any sufficiently small e _ O,

b _0 and T(¢) _ 0 can be found such that

the numbers 51 < O,

v2(6I) --v1(e),

Wl(51) = b

and

a
T -- T(c)= p
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proof of this theorem will consist in showing that for

any x o ¢ s5,CA) and any to, tI such that tI >t o + T(e), every

trajectory _(t) starting at _(to) = Xo, satisfies pC_Ctl), A) < ¢.

For every trajectory x = _(t), the inequality v(x, t) _ v2(5' ) = Vl(5 )

insures that _(t) remains in Ss(A ) for t _ to; besides

v(_(t),t) • _+(x,t) • -vi(p(x,A)).

If in the interval [to, t o + T], the trajectory _(t)

remain outside SsICA), so that PC_Ct), A) > 51,

g v(_(t), t) • - _,lCpC_Ct), A)) • - _,1(51) = - b.

}_Le_ 9.8

v(_(to+_), to+T) •a-bT,

would

a being an upper bound of the value v(_(to) , to). Substituting the

value of T, the contradiction

a
v(_(to+_), t o+T) •a-b" _=0

is obtained. Therefore every trajectory starting at Xo, to ¢ Ss,(A)

comes into SsI(A ) at some t' in the interval [tol to + T]. But then,

for any tI > t',

VlCPC@(tl), A)) -_vC_(tl), ti) -_v(@Ct'), t') -_v2(51) = viCE )



so t_t p(_(tl) , A) _ _.

Lemma 9-9: If v(x, t) is a real function defined in X x R,

if f(t) is continuously differentiable, and u(x, t)= v(x, t) • f(t),

then

_+(X, t) = $÷(X, t) • f(t) + v(x, t) " dt "

Proof:

_,(F(x,t,=),=) - _(x,t_.5 -_0 +
t <_ <t + 5 I=

lim
0 _0 +

= lim

0 _0 +
g'l'b" Iv(F(x't'_'_)t "v(x't); t <_ <t + 5I" f(t) +

+ v(x,t) _ =

-__+(s, t)- _(t)+ _(_, t). dr(t).
dt

Theorem 9-_: If AC X is closed and v(x, t) is a real function de-

fined and uniformly bounded in some closed neighborhood $5-_, if

v(x, t) and -SJ(x, t) are positive definite (A)j then A is uni-

formly weakly asymptotically stable.



Proof: By Theorem 9.2, A is uniformly weakly stable, so that

only the quasi-asymptotic stability has to be proved.

definition of a positive definite function, there are increas-

lag continuous functions Vl, v2, Wl, w2 such that

Vl(0 ) = V2(0 ) = Wl(0 ) = w2(0 ) = 0 and for x #A,

v1(p(x, A)) :_v(x, t) :_v2(p(x , a)),

wl(P(x , A)) :_- __+(x, t) :_v2(¢(x , A)).

bsides, it may be assumed that

vi(8)= v2(_,)= a

is flnite.

Given ¢ > 0s

that for any (xo, to)¢ S5.(A) × R,

that

t) _(t o) . xo,

ii) _(t ° ÷ tl) _ S(A) for some

tit) v2(_) = vl(_).

[q, _],

the function

the existence of a number T will be found such

there is a trajectory _(t) such

tI • T_ where

_i(_)
The function _ is continuous and positive in the interval

hence, in that interval it has a lower bound £z = £z(_) > O. Now



u(x,t) - v(_,
a(t - t o)

t) • e

is lower semi-continuous and for _ _ p(x, A) • 5,

__÷(x,t) - [_÷(_, t) + _(_, t):e a(t" t°)

act - to)
[-VlCPCx, A))+ (:zv2CPCX, A))]e

•=l(p(=, x)) =(t -
. [. _2(,_:i, _)) + =]=2(p(=, _))_ to)

me

_0.

Nov the Le:_a 9.6 can be applied to the function u(x, t),

on the net D - {(x, t); I1 :; p(x, A) ]; 6}, where _÷(X, t) l; O.

Suppose (Xo, to) fixed, xo ¢ S5'(A).

v(x o, to) , v2(p(xo, x)) < vs(_'), so_, ta_

the set

t_ken

Hence s---

-2(P(Xo, A))< k < ._(8'),

s- {(x_ t); u(x, t) t k, t _ to, o(x, A) • _}

satisfies the requirements of Le___a 9.6.

tory q_(t) starting at q_(to) ffi x ° and:

Therefore .there is a traJee-

i) remaining in B for all t >to, or

ii) leaving B at the boundary of D.

But _(t) must leave the set B for some

,2(_')
T >ul_log vl--_,

tI • t o + T, where



because for t > t o ÷ T the section of B with the plane t = T is

enpty. Indeed

u(x, t) , k < v2(8') ar,d

u(x,t) - .(x,t)e_ > (x,t)_(a •_los"_(_').i--_•

v2(8')
• ,z(p(=, _)) _ • ,2(8')

are contradicting. Therefore _(t) must leave the set B on the

part of the boun_ry_ere p(x, A) = _ or p(x, A) - _. But B does

not meet the set (x; pCx I A) - _)1 because on this set

=(t - to)
u(x, t) . ,(x, t)e = ,z(_) - vz(s').

Hence_ _(t) leaves B through the boundary where p(x s A) - _ and

_(tl) ¢ S_(A) for sose t 1 _ t o + T_ as it was to be proved. Note

that T does not depend on Xo, t o but only on q defined by

vz(_) - vz(E).

'J_herefore the existence of the trajectory _(t), starrY, rig at

(Xo, to) and such that for tI ¢ [to, to + T]p _(tl) ¢ Sq(A), has

been proved. In order to continue this trajectory for t > tl, the

saBe procedure can be applied, taki_ ¢ instead of ¢. So, _(t)

will be extended to some t 2 where _(t2) c S 2(A), where

.2(,_) c s%(A),= Vl(_). In general, after n steps, _(tn) ¢ where

v2(_n ) = Vl(_). So, _(t) is defined for every t • to.



Besides, for t • _

SO that pCq_(t), A) _ ¢. Similarly, for t _ in, pC_Ct), A) • C_n

Th£s proves that p(_(t), A) _0 for t -_. _e fact that the t n - t o

are bounded in terms of the T(_)_ gives the unt_or_ty needed for the

definition of uniform quasi-asymptotic stability. _erefore the theorem

ts proved.
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